Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Environ Health ; 21(1): 137, 2022 12 24.
Article in English | MEDLINE | ID: covidwho-2196302

ABSTRACT

OBJECTIVE: To compare estimates of spatiotemporal variations of surface PM2.5 concentrations in Colombia from 2014 to 2019 derived from two global air quality models, as well as to quantify the avoidable deaths attributable to the long-term exposure to concentrations above the current and projected Colombian standard for PM2.5 annual mean at municipality level. METHODS: We retrieved PM2.5 concentrations at the surface level from the ACAG and CAMSRA global air quality models for all 1,122 municipalities, and compare 28 of them with available concentrations from monitor stations. Annual mortality data 2014-2019 by municipality of residence and pooled effect measures for total, natural and specific causes of mortality were used to calculate the number of annual avoidable deaths and years of potential life lost (YPLL) related to the excess of PM2.5 concentration over the current mean annual national standard of 25 µg/m3 and projected standard of 15 µg/m3. RESULTS: Compared to surface data from 28 municipalities with monitoring stations in 2019, ACAG and CAMSRA models under or overestimated annual mean PM2.5 concentrations. Estimations from ACAG model had a mean bias 1,7 µg/m3 compared to a mean bias of 4,7 µg/m3 from CAMSRA model. Using ACAG model, estimations of total nationally attributable deaths to PM2.5 exposure over 25 and 15 µg/m3 were 142 and 34,341, respectively. Cardiopulmonary diseases accounted for most of the attributable deaths due to PM2.5 excess of exposure (38%). Estimates of YPLL due to all-cause mortality for exceeding the national standard of 25 µg/m3 were 2,381 years. CONCLUSION: Comparison of two global air quality models for estimating surface PM2.5 concentrations during 2014-2019 at municipality scale in Colombia showed important differences. Avoidable deaths estimations represent the total number of deaths that could be avoided if the current and projected national standard for PM2.5 annual mean have been met, and show the health-benefit of the implementation of more restrictive air quality standards.


Subject(s)
Air Pollutants , Air Pollution , Humans , Air Pollutants/adverse effects , Air Pollutants/analysis , Particulate Matter/adverse effects , Particulate Matter/analysis , Colombia/epidemiology , Air Pollution/adverse effects , Air Pollution/analysis , Cities , Environmental Exposure/adverse effects , Mortality
2.
Sci Total Environ ; 756: 144020, 2021 Feb 20.
Article in English | MEDLINE | ID: covidwho-943599

ABSTRACT

OBJECTIVE: The present study aimed to determine the association between chronic exposure to fine particulate matter (PM2.5), sociodemographic aspects, and health conditions with COVID-19 mortality in Colombia. METHODS: We performed an ecological study using data at the municipality level. We used COVID-19 data obtained from government public reports up to and including July 17th, 2020. We defined PM2.5 long-term exposure as the 2014-2018 average of the estimated concentrations at municipalities obtained from the Copernicus Atmospheric Monitoring Service Reanalysis (CAMSRA) model. We fitted a logit-negative binomial hurdle model for the mortality rate adjusting for sociodemographic and health conditions. RESULTS: Estimated mortality rate ratios (MRR) for long-term average PM2.5 were not statistically significant in either of the two components of the hurdle model (i.e., the likelihood of reporting at least one death or the count of fatal cases). We found that having 10% or more of the population over 65 years of age (MRR = 3.91 95%CI 2.24-6.81), the poverty index (MRR = 1.03 95%CI 1.01-1.05), and the prevalence of hypertension over 6% (MRR = 1.32 95%CI1.03-1.68) are the main factors associated with death rate at the municipality level. Having higher hospital beds capacity is inversely correlated to mortality. CONCLUSIONS: There was no evidence of an association between long-term exposure to PM2.5 and COVID-19 mortality rate at the municipality level in Colombia. Demographics, health system capacity, and social conditions did have evidence of an ecological effect on COVID-19 mortality. The use of model-based estimations of long-term PM2.5 exposure includes an undetermined level of uncertainty in the results, and therefore they should be interpreted as preliminary evidence.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Aged , Air Pollutants/analysis , Air Pollution/analysis , Colombia/epidemiology , Environmental Exposure/analysis , Humans , Mortality , Particulate Matter/analysis , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL